
Argonne Leadership Computing Facility1

Profiling Deep Learning Workloads

Murali Emani,
Data Science group, ALCF

memani@anl.gov

Argonne Leadership Computing Facility1

Argonne Leadership Computing Facility2

Introduction

• Profiling is an approach to measure application performance

• Simple Profiling:
- How long does an application take

• Advanced Profiling:
- Why does an operation take long time

• Goal: Find performance bottlenecks
- inefficient programming
- memory I/O bottlenecks
- parallel scaling

Argonne Leadership Computing Facility3

Typical Optimization Workflow

Profile
application

Inspect and
analyze

Optimize

Iterative workflow till desired performance is reached

Argonne Leadership Computing Facility4

Broad classification

• Hardware counters
count events from CPU perspective (# of flops, memory loads, etc.)
usually needs Linux kernel module installed or root permission

• Statistical profilers (sampling)
interrupt program at given intervals to find the state of a program

• Event based profilers (tracing)
collect information on each function call

Argonne Leadership Computing Facility5

Plethora of Tools
• Cprofile
• Gprof
• Perf tool
• Intel Vtune
• HPCToolKit
• OpenSpeedShop
• TAU
• Nvidia Nvprof, Nsight
….
…

Argonne Leadership Computing Facility6

Profiling DNN workloads
• Critical to understand workload performance

• Machine learning and deep learning models are implemented on a variety
of hardware

• Most applications are written in Python using standard ML frameworks

• The frameworks generate kernels based on hardware and customized
installation and libraries (MKL-DNN, CuDNN etc.)

Argonne Leadership Computing Facility7

Challenges

• Profiling is hard, cumbersome and time-consuming

• Profiling tools generate lot of data and hard to understand

• The problem is further compounded with large, complex models with large
volumes of data

• Need strategies to use right tools and detailed insights to how to analyze the
profile data

Argonne Leadership Computing Facility8

Profiling on Nvidia GPUs

Argonne Leadership Computing Facility9

Profiling on Nvidia GPUs
Use Nvidia profiler ‘Nvprof’

• capture metrics from hardware counters
• invoked via command line or UI (Nvidia Visual Profiler NVVP)

See list of options using
nvprof –h

Some useful options:
-o: create output file to import into nvvp
--metrics / -m : collect metrics
--events / -e : collect events
--log-file : create human readable output file
--analysis-metrics : collect all metrics to import into nvvp
--query-metrics/--query-events: list of available metrics/events

Argonne Leadership Computing Facility10

Events and Metrics
• An event is a countable activity, action, or occurrence on a device. It corresponds to

a single hardware counter value which is collected during kernel execution
• A metric is a characteristic of an application that is calculated from one or more

event values
In general, events are only for experts, rarely used.

• Vary in number based on hardware family (P100, K80, V100 etc)
• For example, on V100, nvprof gives 175 metrics
• Event and metric values are aggregated across all units in the GPU.

Argonne Leadership Computing Facility11

Workflow – on Cooley

Option 1)
• Use ‘nvprof’ to collect metrics in an output file (compute node)
• Use ‘nvvp’ to visualize the profile (login node)

Option 2)
• Directly launch nvvp on compute node and profile the code interactively

Argonne Leadership Computing Facility12

Profile Commands

– Kernel timing analysis:
nvprof –-log-file timing.log <myapp>
nvprof -–log-file timing.log python myapp.py args

– Traces (#threads, #warps, #registers)
nvprof –-print-gpu-traces -–log-file traces.log <myapp>

– Get all metrics for all kernels
nvprof --metrics all --log-file all-metrics.log <myapp>

– Get metrics for guided analysis
nvprof --analysis-metrics –o analysis.nvvp <myapp>

– Visual profile to use Nvidia Visual Profiler (nvvp)
nvprof –o analysis.nvvp <myapp>

Argonne Leadership Computing Facility13

Selective Profiling
• As profiling adds significant overhead, a better strategy is to profile only regions of

interest (kernels and metrics)

• All metrics for kernels of interest:
nvprof --profile-from-start off –-kernels <kernel-name> –-metrics all
--log-file selective-profile.log <myapp>

• few metrics for kernels of interest
nvprof --profile-from-start off-–kernels <kernel-name> –-metrics ipc
--log-file selective-profile.log <myapp>

For example, if we want to profile heavy kernels only
Step 1) use nvprof to list all kernels sorted by the time
Step 2) re-run nvprof in selective profiling mode

• Profile GEMM kernels
nvprof --profile-from-start off –-kernels “::gemm:1” –-metrics all
--log-file selective-profile.log <myapp>

Argonne Leadership Computing Facility14

Metrics and Events
Metrics relevant to identify compute, memory, IO characteristics

achieved_occupancy
ratio of the average active warps per active cycle to the
maximum number of warps supported on a multiprocessor

ipc Instructions executed per cycle

gld_efficiency
Ratio of requested global memory load throughput to required
global memory load throughput expressed as percentage.

gst_efficiency
Ratio of requested global memory store throughput to required
global memory store throughput expressed as percentage.

dram_utilization
The utilization level of the device memory relative to the peak
utilization on a scale of 0 to 10

Argonne Leadership Computing Facility15

Detailed Analysis
Use visual profiler nvvp

40

More details
Deep dive into a kernel

• The profilers let us dig much deeper into
individual kernels

• Moving from “it is going slow?” to “why is
it going slow?”

• Let’s dive into the elementwise
operation

• Requires interactive nvvp session, or
output from --analysis-metrics

Argonne Leadership Computing Facility16

41

Argonne Leadership Computing Facility17

Example

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu’))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax’))

model.compile(…....)

model.fit(.....)

Simple CNN in Keras

https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

Argonne Leadership Computing Facility18

Argonne Leadership Computing Facility19

Nvidia Nsight Tools
• Nsight Systems - System-wide application algorithm tuning
• Nsight Compute – Debug CUDA API and optimize CUDA kernels

• To profile
$ nsys profile python train.py

• This generates profile file in ‘report.qdrep’ which can be imported to view with
Nsight Systems UI

• To identify which kernels are run on Tensorcores (dedicated HW units for half/mixed
precision matrix multiply-accumulate ops)

$ nv-nsight-cu-cli --kernel-id ::s884:1 python train.py

Argonne Leadership Computing Facility20

https://bluewaters.ncsa.illinois.edu/liferay-content/document-library/content/NVIDIA%20Nsight%20Systems%20Overview%20by%20Sneha%20Kottapalli.pdf

https://bluewaters.ncsa.illinois.edu/liferay-content/document-library/content/NVIDIA%20Nsight%20Systems%20Overview%20by%20Sneha%20Kottapalli.pdf

Argonne Leadership Computing Facility21

https://bluewaters.ncsa.illinois.edu/liferay-content/document-library/content/NVIDIA%20Nsight%20Systems%20Overview%20by%20Sneha%20Kottapalli.pdf

https://bluewaters.ncsa.illinois.edu/liferay-content/document-library/content/NVIDIA%20Nsight%20Systems%20Overview%20by%20Sneha%20Kottapalli.pdf

Argonne Leadership Computing Facility22

Profiling on CPUs using Intel Vtune

Argonne Leadership Computing Facility23

Application Performance Snapshot (APS)
APS generates a highlevel performance snapshot of your application. Easy to run:

Results can be viewed in a single html file, or via command line:
Summary information
HW Platform : Intel(R) Processor code named Knights Landing
Logical core count per node: 256
Collector type : Driverless Perf system-wide counting
Used statistics : aps_results

|
| Your application might underutilize the available logical CPU cores
| because of insufficient parallel work, blocking on synchronization, or too much I/O.
Perform function or source line-level profiling with tools like Intel(R) VTune(TM)
Amplifier to discover why the CPU is underutilized.
CPU Utilization: 6.50%

| Your application might underutilize the available logical CPU cores because of
| insufficient parallel work, blocking on synchronization, or too much I/O.
| Perform function or source line-level profiling with tools like Intel(R)

source /soft/compilers/intel/19.0.3.199/vtune_amplifier/apsvars.sh
export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/soft/compilers/intel/19.0.3.199/vtune_amplifier
/lib64
aps --result-dir=aps_results/ -- python /full/path/to/script.py

Argonne Leadership Computing Facility24

Application Performance Snapshot (APS)

• Very easy to use
• Tracks important hardware metrics:

• Thread Load Balancing
• Vectorization
• CPU Usage

Pros Cons
• Only high level information – but then

again, that is the design of this tool.

Argonne Leadership Computing Facility25

Intel Vtune – Hotspots

sampling-mode=sw - User-Mode Sampling (default) used for profiling:
• Targets running longer than a few seconds
• A single process or a process-tree
• Python and Intel runtimes

sampling-mode=hw - (Advanced hotspots) Hardware Event-Based Sampling
used for profiling:

• Targets running less than a few seconds
• All processes on a system, including the kernel

Argonne Leadership Computing Facility26

Intel Vtune – Advanced Hotspots

amplxe-cl -collect hotspots -knob sampling-mode=hw -finalization-mode=none -r vtune-
result-dir_advancedhotspots/ -- python /full/path/to/script.py

Advanced Hotspots analysis

• Detailed report of how effective the computation is on CPUs
• extends the hotspots analysis by collecting call stacks, context switch and

statistical call count data and analyzing the CPI (Cycles Per Instruction) metric.

Run the finalization step after the run completes from the login nodes

amplxe-cl -finalize -search-dir / -r vtune-result-dir_advancedhotspots

Argonne Leadership Computing Facility27

Intel Vtune – Advanced Hotspots

• Visualize each thread activity and the functions that cause it.
• Give a bottom up and top down view, very useful for seeing which functions are

hotspots

amplxe-gui vtune-result-dir_advancedhotspots

Run the GUI to view your
results:

Argonne Leadership Computing Facility28

Useful Commands
amplxe-cl -c hotspots -- python3 myapp.py
amplxe-cl -R hotspots -report-output report-hotspots.csv -format csv

amplxe-cl -c uarch-exploration -k sampling-interval=100 -- python3 myapp.py
amplxe-cl -R uarch-exploration -report-output report-uarch-exploration.csv -format csv

amplxe-cl -c memory-access -k sampling-interval=100 -- python3 myapp.py
amplxe-cl -R memory-access -report-output report-memory-access.csv -format csv

amplxe-cl -c memory-consumption -k sampling-interval=100 -- python3 myapp.py
amplxe-cl -R memory-consumption -report-output report-memory-consumption.csv -format csv

change sampling interval
-k sampling-interval=<number>

Argonne Leadership Computing Facility29

Useful Commands
amplxe-cl -report hw-events/summary -r r000ue/ -report-output ./report-uarch.csv -format
csv

amplxe-cl -collect hotspots -strategy ldconfig:notrace:notrace -- python myapp.py

get MKL-DNN verbose
export MKLDNN_VERBOSE=2
amplxe-cl -collect hotspots -strategy ldconfig:notrace:notrace -- python myapp.py

Argonne Leadership Computing Facility30

Hands-on Exercise
Example scripts to profile an image classification CNN model with TF/Keras

https://github.com/argonne-lcf/ATPESC_MachineLearning
cd Profiling

Cooley
qsub -A training -q training -t 1:00:00 -n 1 qsub_mnist_profile_gpu.sh

Theta
qsub -A ATPSEC2020 -q ATPSEC2020 -t 1:00:00 -n 1 qsub_mnist_profile_cpu.sh

Argonne Leadership Computing Facility31

Thank you!

Argonne Leadership Computing Facility31

Argonne Leadership Computing Facility32

backup

Argonne Leadership Computing Facility33

Operations on backward weights, data have stalls à high memory requirements
– Convolution layer is sensitive to compute units, memory and cachelines
– Dense layer is sensitive to communication -> bandwidth

Argonne Leadership Computing Facility34

Argonne Leadership Computing Facility27

VTune profiling
source /opt/intel/vtune_amplifier/amplxe-vars.sh
aprun -n … -e OMP_NUM_THREADS=128 \

-e LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/vtune_amplifier/lib64 \
ampxle-cl -collect advance-hotspots -r output_dir python script.py

The python modules are compiled using -g flag. Therefore, the user could trace the source file in Vtune.

Remember to set LD_LIBRARY_PATH,
Put vtune library at the end!! Otherwise, it
might complaint about the GLIBCXX version.

More details: Profiling Your Application with Intel VTune and
Advisor - Carlos Rosales-Fernandez and Paulius Velesko, Intel

Argonne Leadership Computing Facility35

GPU Memory - metrics

1.dram_read_throughput, dram_read_transactions
2.dram_write_throughput, dram_write_transactions
3.sysmem_read_throughput, sysmem_read_transactions
4.sysmem_write_throughput, sysmem_write_transactions
5.l2_l1_read_transactions, l2_l1_read_throughput
6.l2_l1_write_transactions, l2_l1_write_throughput
7.l2_tex_read_transactions, l2_texture_read_throughput
8.texture is read-only, there are no transactions possible on
this path
9.shared_load_throughput, shared_load_transactions
10.shared_store_throughput, shared_store_transactions
11.l1_cache_local_hit_rate
12.l1 is write-through cache, so there are no (independent)
metrics for this path - refer to other local metrics
13.l1_cache_global_hit_rate
14.see note on 12
15.gld_efficiency, gld_throughput, gld_transactions
16.gst_efficiency, gst_throughput, gst_transactions

https://stackoverflow.com/questions/37732735/nvprof-option-for-bandwidth

GPU Memory

https://stackoverflow.com/questions/37732735/nvprof-option-for-bandwidth

Argonne Leadership Computing Facility36

GEMM – 2*m*n*k operations
m, k – hidden layer size
n = minibatch size

2 * 512 * 512 * 64 = 0.03 GFLOP

Peak upper limit = 6000 GFLOP/s

Runtime ~ 5.6 usec

18

SGEMM Performance

• GEMM performs ~2mnk floating point operations

• In this case, m and k are the hidden layer size, n is the minibatch size

• 512 * 512 * 64 * 2 = 0.034 GFLOP

• The GPU I’m using can perform ~6,000 GFLOP per second

• Best GEMM runtime is therefore: 5.7us

• 72us => ~500 GFLOP/s

Back of the envelope

Time(%) Time Calls Avg Min Max Name
 93.93% 575.72us 8 71.964us 70.241us 78.945us maxwell_sgemm_128x64_tn

Argonne Leadership Computing Facility37

Optimization

22

[A1][h] = [x1]

[A2][h] = [x2]

[A3][h] = [x3]

[A4][h] = [x4]

SGEMM Performance
Improvement #1

• As our matrix operations share inputs we can combine them

A [h] = x

23

Combined Matrices
Improvement #1

Time(%) Time Calls Avg Min Max Name
 93.93% 575.72us 8 71.964us 70.241us 78.945us maxwell_sgemm_128x64_tn

Time(%) Time Calls Avg Min Max Name
 84.40% 198.11us 2 99.057us 98.177us 99.937us maxwell_sgemm_128x64_tn

• From ~500 GFLOP/s to ~1350 GFLOP/s

2.5x performance gain

